
Journal of Magnetic Resonance 155, 300–306 (2002)
doi:10.1006/jmre.2002.2520, available online at http://www.idealibrary.com on

COMMUNICATIONS

Cogwheel Phase Cycling

Malcolm H. Levitt,∗ P. K. Madhu,∗ and Colan E. Hughes†
∗Chemistry Department, Southampton University, England SO17 1BJ; and †Physical Chemistry Division, Stockholm University, S-10691 Sweden

E-mail: Malcolm.Levitt@soton.ac.uk

Received November 26, 2001; revised February 5, 2002

A new method for constructing phase cycles is described. The
new schemes apply to experiments involving several consecutive
coherence transfer steps. The radiofrequency phases of two or more
irradiation blocks are incremented simultaneously, as opposed to
the traditional “nested” scheme, in which the block phases are in-
cremented independently. In many cases, the “cogwheel” phase cy-
cles achieve the same selectivity as traditional phase cycles, using
fewer steps. Significant time savings are achievable in a wide range
of NMR experiments. C© 2002 Elsevier Science (USA)

Key Words: phase cycling; coherence transfer pathways; cog-
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INTRODUCTION

Phase cycling is one of the most important general tools in
NMR pulse sequence design. In general, phase cycling involves
repetition of an NMR pulse sequence several times, with the
same values of the time intervals and rf amplitudes and frequen-
cies, but with variation of one or more radiofrequency phases.
The different NMR signals are multiplied by complex phase fac-
tors and added together. A properly designed phase cycle allows
the selection of well-defined classes of NMR signals, with sup-
pression of undesirable or uninteresting NMR signals, and in
some cases, suppression of artifacts arising from instrumental
imperfections.

In many experimental situations, the time span of an NMR
experiment is determined by the need to complete the phase
cycle, rather than the necessity of accumulating sufficient signal.
There is therefore a strong motivation for constructing phase
cycles of minimal length.

The modern theory of phase cycling was established indepen-
dently by Bodenhausen et al. (1) and by Bain (2). This theory
established the importance of the coherence transfer pathway
(CTP), which is defined as the chronological sequence of spin
coherence orders giving rise to a particular signal component.

In this paper, we use a modified notation for the rf phases and
the coherence transfer orders to make a clearer correspondence
with the pulse sequence. Consider the case where a pulse se-
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quence is composed of three independent blocks, A, B, C . The
overall phases of the different blocks {φA, φB, φC} may be var-
ied with respect to each other, but the relative phases and timings
of pulses within each block are always kept fixed. The complex
NMR signal at time t after the end of the pulse sequence may
be expressed

s(t) =
∑

p

sp(t), [1]

where p denotes a coherence transfer pathway, p = {0, pAB,

pBC , −1}. Here pAB represents the order of coherences in the
interval between the blocks A and B, pBC represents the order
of coherences in the interval between the blocks B and C . All
pathways originate with order 0, representing a reproducible
initial state containing only spin state populations, and terminate
with order −1, representing quadrature detection of the free-
induction decay and construction of a complex NMR signal
(3, 4).

Each of the signal components sp has a well-defined depen-
dence on the overall phases {φA, φB, φC} of the pulse sequence
blocks, and on the signal detection phases, according to

sp(t ; φA, φB, φC , φrec, φdig) = sp(t ; 0, 0 . . .) exp{−i�(p)}, [2]

where

�(p) = φA�pA + φB�pB + φC�pC + φrec + φdig, [3]

where φrec is the radiofrequency receiver reference phase, and
φdig is the post-digitization phase shift (4). Here {�pA, �pB,

�pC} are the changes in coherence order induced by the pulse
sequence blocks, i.e.,

�pA = pAB − 0 = pAB

�pB = pBC − pAB [4]

�pC = −1 − pBC .
0
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Suppose that the overall phases are cycled in a series of
N steps, i.e., {φA, φB, φC , φrec, φdig} take the values {φ(0)

A , φ
(0)
B ,

φ
(0)
C , φ(0)

rec, φ
(0)
dig}, {φ(1)

A , φ
(1)
B , φ

(1)
C , φ(1)

rec, φ
(1)
dig} . . . in successive ac-

quired transients. Denote the phase cycle counter by m = 0,

1, . . . N − 1. The pathway phase for transient m is given by

�(m)(p) =φ
(m)
A �pA +φ

(m)
B �pB +φ

(m)
C �pC +φ(m)

rec +φ
(m)
dig . [5]

Phase cycles consist of a set of N experiments for which the
pathway phase factors exp{−i�(m)(p)} constructively interfere
for desired signal pathways p ∈ {p0, p0′ . . .}, and destructively
interfere for undesired signal pathways p /∈ {p0, p0′ . . .}:

N−1
N−1∑
m=0

exp
{−i�(m)(p)

} =
{

1 if p ∈ {p0, p0′ . . .}
0 otherwise.

[6]

Constructive interference for desired pathways is ensured by
selecting the phases so as to satisfy the “master equation”

�(m)(p) = constant if p ∈ {p0, p0′ . . .} [7]

for all transients m. It is more difficult to ensure complete de-
structive interference for all undesired pathways. The subject
of this communication is to find phase cycles satisfying Eq. [6]
with small values of N .

CONVENTIONAL PHASE CYCLING

To make this discussion concrete, consider the pulse sequence
for the triple-quantum NMR of spin-3/2 systems sketched in
Fig. 1. This consists of three blocks: The first block excites
(+3)-quantum coherences starting from a thermal equilibrium
state (pAB = +3). The second block partially converts these
coherences into (+1)-quantum coherences, in order to induce a
second-order quadrupolar echo (5–11) (pBC = +1). The third
block consists of a π pulse, which converts the (+1)-quantum
coherences into observable (−1)-quantum coherences, in order
to obtain pure absorption 2D spectra (9). The pulse sequence
denoted here consists of the recently developed FAM-RIACT-
FAM sequence, which gives particularly high signal intensities
(11, 26), but the discussion is general for all 3-quantum experi-
ments in spin-3/2 systems.

In this particular experiment, only the single pathway p0 =
{0, +3, +1, −1} gives rise to useful high-resolution NMR spec-
tra. Signals from all other pathways should be discarded by the
phase cycle. In the case of isolated spins-3/2, only pathways
involving coherence orders −3 ≤ p ≤ 3 need to be considered.

There are different ways of implementing the conventional
procedure for constructing phase cycles. For example, all path-
ways with orders pAB �= +3 may be suppressed by cycling block

A in a minimum of 7 steps. The number 7 arises because the
order change �pA = +3 should be allowed, while the six adja-
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FIG. 1. FAM-RIACT-FAM pulse sequence for triple-quantum MAS of spin-
3/2 systems, and its coherence transfer pathway diagram (see Ref. (11)). The
FAM sequence consists of strong short pulses with phases differing by π radians.
The RIACT sequence consists of a selective π/2 pulse on the central transition
followed by one-quarter of a rotor period of strong rf irradiation, phase shifted by
π/2 radians. (+3)-quantum coherences are excited by the initial FAM-RIACT
sequence, and converted into central transition (+1)-quantum coherence by the
second FAM sequence. The π pulse forms a central transition single-quantum
echo which is used to obtain pure absorption 2D spectra. The pulse sequence
includes a split-t1 interval and an echo interval τ . The overall phases of the
three blocks A, B, and C , as well as the receiver and digitizer phases φrec
and φdig, are cycled to select out signals passing through the desired pathway
p0 = {0, +3, +1, −1}.

cent order changes �pA = {+2, +1, 0, −1, −2, −3} should be
suppressed. Similarly, all pathways with orders pBC �= +1 may
be suppressed by cycling block C in a minimum of 5 steps.
The number 5 arises because the order change �pC = −2
should be allowed, while the four adjacent order changes �pC =
{+2, +1, 0, −1} should be suppressed. (Five-step cycling au-
tomatically suppresses the additional undesired order changes
�pC = {−3, −4}.) In order to separate these selection rules
cleanly, the phases of blocks A and C are cycled in a nested
fashion, leading to a 35-step phase cycle, according to

φ
(m)
A = 2π

7
m

φ
(m)
B = 0 [8]

φ
(m)
C = 2π

5
floor

(
m

7

)
,

where m is the phase cycle counter, m = 0, 1, . . . 34, and floor(x)
is the largest integer which is not greater than x (4). In or-
der to ensure that the signals from the desirable pathway
p0 = {0, +3, +1, −1} constructively interfere, the signal detec-
tion phases φ(m)

rec and φ
(m)
dig are adjusted to satisfy the “master

equation” (Eq. [7]), for example by choosing the phases such
that
+3φ
(m)
A − 2φ

(m)
B − 2φ

(m)
C + φ(m)

rec + φ
(m)
dig = 0. [9]
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For example, one implementation of the 35-step phase cycle
would combine Eq. [8] with the following receiver phase cycle

φ(m)
rec = −3

2π

7
m + 2

2π

5
floor

(
m

2

)
[10]

φ
(m)
dig = 0.

If desired, suppression of receiver artifacts could be imple-
mented by super imposing a further layer of phase cycling in-
volving the postdigitization phase shifter.

It is possible to construct nested phase cycles in other ways.
For example, block B could be cycled instead of block C . This
also leads to 35-step phase cycle. The desired order change
over block B is �pB = −2, and the four adjacent changes
�pB = {−3, −4, −5, −6} must be suppressed, suggesting a
5-step cycle for block B. This 5-step cycle also suppresses the
undesired order changes �pB = {0, −1}. As a result, a cycle
based on phase variations for blocks A and B also has 7 × 5 =
35 steps.

The inescapable conclusion seems to be that the minimal
phase cycle for this problem (if receiver artifacts are neglected)
is 35 steps.

COGWHEEL PHASE CYCLING

In order to develop a new approach to phase cycling, consider
a strategy in which the phases of the pulse sequence blocks
are incremented simultaneously, at a defined ratio of angular
velocities, like a set of meshing cogwheels.

For example, in the MQ-MAS case discussed above, make an
ansatz that the phases of blocks A, B, and C are incremented

φ
(m)
A = 2πνA

N
m

φ
(m)
B = 2πνB

N
m [11]

φ
(m)
C = 2πνC

N
m,

where νA, νB , νC are integers called the winding numbers, N
is the number of steps in the phase cycle, and m is the phase
cycle counter, m = {0, 1, . . . N − 1}. These equations define a
N -step phase cycle, with the phase φA incrementing in steps of
νA×(2π/N ), the phase φB incrementing in steps of νB×(2π/N ),
and the phase φC incrementing in steps of νC ×(2π/N ), all at the
same time. When the complete cycle of N steps is completed,
the phase φA will have completed νA full revolutions, the phase
φB will have completed νB full revolutions, and the phase φC

will have completed νC full revolutions. The notation used here
is borrowed from the symmetry theory of recoupling sequences
in solid-state NMR (12–17).
The accumulated phase for a general pathway p = {0, pAB,

pBC , −1} is given by
ICATIONS

�(m)(p) = φ
(m)
A �pA + φ

(m)
B �pB + φ

(m)
C �pC + φ(m)

rec + φ
(m)
dig

= 2πm

N
(νA�pA + νB�pB + νC�pC ) + φ(m)

rec + φ
(m)
dig .

[12]

It proves to be convenient to define the differences between the
winding numbers for adjacent pulse sequence blocks as

�νAB = νB − νA
[13]

�νBC = νC − νB .

The accumulated phase for a general pathway may then be ex-
pressed

�(m)(p) = 2πm

N
{−�νAB pAB − �νBC pBC

− (νA + �νAB + �νBC )} + φ(m)
rec + φ

(m)
dig . [14]

Note that this equation involves the absolute coherence orders
{pAB, pBC . . .} between blocks, rather than the changes in co-
herence orders induced by a pulse sequence block.

Now suppose that on each step of the phase cycle, the re-
ceiver and digitizer phase are adjusted according to the “master
equation” (Eq. [7]) for the desired pathway p0. This ensures that
the signals from the desired pathway constructively interfere on
each step. Under these conditions we may recast Eq. [14]

�(m)(p) = 2πm

N

{−�νAB
(

pAB − p0
AB

)−�νBC
(

pBC − p0
BC

)}
,

[15]

where p0
AB is the order of the pathway p0 between blocks A and

B, and p0
BC is the order of the pathway p0 between blocks B

and C . The selection rule for this cogwheel cycle is therefore
based on the value of the sum

S(p) = N−1
N−1∑
m=0

exp

{
i
2πm

N

[
�νAB

(
pAB − p0

AB

)

+ �νBC
(

pBC − p0
BC

)]}
. [16]

It is easily shown (4) that this sum evaluates to

S(p) =




1 if (�νAB pAB + �νBC pBC )

= (
�νAB p0

AB + �νBC p0
BC

) + N × integer

0 otherwise.

[17]
Equation [17] is the general selection rule for cogwheel phase
cycling in the case of three pulse sequence blocks, A, B, and C .
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Feasible cogwheel phase cycles may be found by searching for
combinations of N , �νAB , and �νBC such that the equality
(�νAB pAB + �νBC pBC ) = (�νAB p0

AB + �νBC p0
BC ) + N ×

integer is satisfied for all desired pathways p ∈ {p0, p0′
. . .},

while the same equality is not satisfied for all undesired path-
ways.

For example, in the MQ-MAS case discussed above, there
is only one desired coherence transfer pathway, namely p0 =
{0, +3, +1, −1}. Feasible cogwheel phase cycles satisfy

(�νAB pAB + �νBC pBC ) �= (3�νAB + �νBC ) + N × integer

[18]

for all pathways p �= p0 which start at order 0, terminate at
order −1, and which pass through coherence orders satisfying
−3 ≤ pAB ≤ +3 and −3 ≤ pBC ≤ +3.

A numerical search shows that the shortest solutions exist
for the case N = 23. There are 22 such solutions, including
{N , �νAB, �νBC} = {23, +3, +1}, {23, 2, −7}, {23, 1, 8}, {23,

4, 9}, {23, 5, −6}, {23, 7, 10}, and their phase-inverted counter-
parts, {23, −3, −1}, {23, −2, +7}, {23, −1, −8}, {23, −4, −9},
{23, −5, +6}, and {23, −7, −10}. There are also numerous so-
lutions with N > 23.

In order to clarify the implementation of a cogwheel phase
cycle, consider the solutions with {N , �νAB, �νBC} = {23, +3,

+1}. One implementation may be realized by assuming that the
first pulse sequence block has constant phase, i.e., νA = 0. From
Eq. [13], we get νB = �νAB = +3 and νC = �νBC + νB = +1
+3 = +4. The cogwheel phases for the three pulse sequence
blocks are therefore

φ
(m)
A = 0

φ
(m)
B = 3 × 2π

23
m [19]

φ
(m)
C = 4 × 2π

23
m,

where m is the phase cycle counter, m = 0, 1, . . . 22. The re-
ceiver and digitizer phase may be constructed from the master
equation for the desired pathway p0 (Eq. [9]), which leads to

φ(m)
rec = 14 × 2π

23
m

[20]
φ

(m)
dig = 0.

This defines a 23-step phase cycle in which the phase of the first
pulse sequence block is fixed, the phase of the second pulse se-
quence block is incremented in steps of (3/23)×360◦ = 46.96◦,
the phase of the third pulse sequence block is incremented in
steps of (4/23) × 360◦ = 62.61◦, and the receiver reference

◦ ◦
phase is incremented in steps of (14/23) × 360 = 219.13 , all
at the same time. In this paper, we denote this cogwheel cycle
by the notation COG23(0, 3, 4; 14).
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An equivalent cogwheel cycle is formed by assuming that the
second block has constant phase, i.e. νB = 0. From Eq. [13], we
get νA = −�νAB = −3 and νC = +�νBC = +1. We therefore
have the following expressions for the phases of the pulse blocks,

φ
(m)
A = −3 × 2π

23
m

φ
(m)
B = 0 [21]

φ
(m)
C = +1 × 2π

23
m.

The master equation Eq. [9] for the pathway p0 = {0, +3,

+1, −1} provides the expression for the receiver phase φ(m)
rec =

((−3) × (−3) + (+2) × (+1)) × (2πm/23) = 11 × 2πm/23,
assuming that the digitizer phase is held at φ

(m)
dig = 0. This cog-

wheel cycle therefore has the notation COG23(−3, 0, +1; 11).
Further cogwheel cycles may be constructed by using differ-

ent solutions for {N , �νAB, �νBC}. For example, one imple-
mentation of the solution {N , �νAB, �νBC} = {23, −3, −1}
is the cycle COG23(+3, 0, −1; −11). Similarly, the solution
{N , �νAB, �νBC} = {23, 2, −7} may be implemented through
the cogwheel cycle COG23(0, 2, −5; −6).

All of these 23-step cogwheel phase cycles have the same
selection properties as the conventional 35-step nested phase
cycles. Both types of phase cycle suppress all possible coherence
transfer pathways in a system of isolated spins-3/2, except for
the second-order quadrupolar echo pathway {0, +3, +1, −1}.

COGWHEEL SELECTION DIAGRAMS

The selection rule in Eq. [18] is readily visualized by using a
cogwheel selection diagram. Figure 2 shows a cogwheel selec-
tion diagram for the set of cycles with {N , �νAB, �νBC} =
{23, +3, +1}. This diagram shows the possible values of
�νAB pAB +�νBC pBC , plotted as horizontal “levels.” The con-
struction of the levels is split into two steps, with level spacings
in a ratio of 3 to 1, to reflect the winding numbers �νAB = +3
and �νBC = +1. In the case shown, the coherence orders pAB

and pBC take all integer values between −3 and +3, so that each
of the 7 branches splits into 7 subbranches. The barrier on the
right-hand side has holes spaced by 23 units. As may be seen, this
is just enough to clearly separate the {pAB, pBC} = {+3, +1}
pathway from all of the others. One can also see that the winding
number �νAB = +3 is just sufficient to separate the desirable
{pAB, pBC} = {+3, +1} pathway from the multiple branches
with pAB = +2.

The cogwheel selection diagrams are closely related to the
space-spin selection diagrams employed in the construction of
symmetry-based pulse sequences in solid-state NMR (12–17).

The selection diagrams also give some insight into how the
cogwheel cycles gain efficiency over the nested phase cycles.

Figure 2 shows that many of the undesirable pathways have the
same value of �νAB pAB +�νBC pBC , and hence have the same
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FIG. 2. Cogwheel selection diagram for the 3Q-MAS pulse sequence. The
barrier on the right-hand side, with holes separated by 23 units, represents
the selection rule for cogwheel phase cycles defined by {N , �νAB , �νBC } =
{23, +3, +1}. The pulse sequence A splits the initial state into a set of pathways
with coherence orders running from pAB = −3 to pAB = +3, each separated
by 3 units, according to the winding number difference �νAB = +3. The pulse
sequence B splits each of these pathways into a new set of subpathways sepa-
rated by 1 unit, according to the winding number difference �νBC = +1. The
desired pathway {pAB , pBC } = {+3, +1} is indicated by a bold line. Note that
the desired pathway terminates on a unique level, unlike most of the others,
which are degenerate. The value N = 23 is just sufficient to pick out the desired
pathway while suppressing all other pathways.

phase signature as the cogwheel phases are advanced. We call
these degenerate pathways. It would be impossible to process
the 23 individual transients in order to separate the degenerate
signals. This compression of information does not matter since
we are only interested in signals generated by the single nonde-
generate pathway {0, +3, +1, −1}. The multiple degeneracy of
many unwanted pathways comprises a time saving in the cog-
wheel approach. In the conventional nested cycle approach, the
degeneracy of unwanted pathways is more limited.

EXPERIMENTAL DEMONSTRATION

The cogwheel phase cycle COG23(+3, 0, −1; −11) is demo-
nstrated experimentally in Fig. 3. This figure shows two-
dimensional 3Q-MAS 87Rb (I = 3/2) spectra of powdered
RbNO3, obtained using the FAM-RIACT-FAM pulse sequence
described in Ref. (11). Figure 3a shows the result of applying
the conventional 35-step nested phase cycle, repeated 3 times, so
that 105 transients were acquired for each t1 increment; Fig. 3b
shows the result of the 23-step cogwheel phase cycle, repeated
4 times, so that 92 transients were acquired for each t1 incre-
ment. Other experimental parameters are given in the caption.

Both spectra are of good quality, with good resolution of the
three inequivalent 87Rb sites, and the signal-to-noise ratios con-
form to the expected ratio of

√
105/92 = 1.06.
FIG. 3. Experimental 87Rb 3Q-MAS of RbNO3, obtained at 4.7 T using a
Chemagnetics 4 mm MAS probe and an Infinity-200 spectrometer. The acquisi-
tion dimension is horizontal and the evolution dimension is vertical. The sample
spinning frequency was 10 kHz. The FAM-RIACT-FAM sequence was used in
both cases (11). The nutation frequency of the 87Rb central transition was 70
and 20 kHz, for the hard and soft pulses, respectively (see the two indicated rf
levels in Fig. 1). Each FAM interval consisted of a repetition of four elements,
pulse–delay–pulse–delay, where each element lasted 1 µs, and the pulse phases
differed by π . The first FAM interval consisted of 25 loops (corresponding to one
rotor period), while the second FAM interval consisted of 3 loops. The strong
rf field during the RIACT sequence lasted 25 µs (one quarter of a rotor period);
128 t1 increments were used, with steps in t1 of 20 µs. A waiting interval of 1 s
was allowed between acquired transients: (a) 2D spectrum using 4 repetitions
of the 23-step cogwheel phase cycle COG23(+3, 0, −1; −11); (b) 2D spectrum

using 3 repetitions of the 35-step nested phase cycle (Eq. [8] and Eq. [10]). Both
spectra show three resolved 87Rb sites, with comparable signal-to-noise ratio,
as shown in the displayed anisotropic slices.
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PREDICTION OF COGWHEEL PARAMETERS

In some cases, it is possible to predict the parameters of min-
imal cogwheel cycles without performing numerical searches.
If the single pathway p0 = {0, p0

AB, p0
BC , −1} is to be selected,

and all other pathways of the form p = {0, pAB, pBC , −1} are to
be rejected, and if the maximum coherence order supported by
the spin system is pmax, then the optimal cogwheel parameters
are predicted to be

N = (
pmax + 1 + ∣∣p0

AB

∣∣)(pmax + 1 + ∣∣p0
BC

∣∣) − 4
∣∣p0

AB p0
BC

∣∣
�νAB = (

signp0
AB

)(
pmax + 1 − ∣∣p0

BC

∣∣) [22]

�νBC = (
signp0

BC

)(
pmax + 1 − ∣∣p0

AB

∣∣),
where signx is equal to 1 if x ≥ 0 and is equal to −1
otherwise. This result applies in the case that the predicted
values of �νAB and �νAB have no common prime factor.
For example, for 3Q-MQMAS spectroscopy of isolated spin-
3/2 systems, for which p0 = {0, +3, +1, −1} and pmax = 3,
Eq. [22] leads to {N , �νAB, �νBC} = {23, 3, 1}, as depicted in
Fig. 2.

A proof of Eq. [22], and further theorems for cogwheel phase
cycles, will be given elsewhere.

FURTHER APPLICATIONS

We have also found advantageous cogwheel solutions for
many other experiments. For example, consider the 5Q MAS
NMR of isolated spins-5/2 in solids. In this case, the path-
way {0, +5, +1, −1} should be selected, with all other path-
ways having |p| ≤ 5 rejected. The minimal nested phase
cycle for this case has 11 × 7 = 77 steps. The minimal cog-
wheel cycles have 57 steps. One set of solutions has the pa-
rameters {N , �νAB, �νBC} = {57, +5, +1}, as predicted from
Eq. [22]. An example is the cogwheel cycle COG57(0, 5, 6; 32).

Cogwheel phase cycles provide the most impressive gains
in instrument time when there are multiple coherence transfer
steps. Consider, for example, a TOSS (18–20) or PASS (18,
21) experiment on isolated spins-1/2 in a solid. Suppose that
5 π pulses are used for preparing the transverse magnetization
(19–21). In the presence of radio-frequency pulse imperfec-
tions, the phase cycling scheme should select the desirable signal
pathway p0 = {0, +1, −1, +1, −1, +1, −1} and reject all other
pathways with coherence orders 0 or ±1 between the π pulses.
This may be achieved by nested phase cycling of all 5 π pulses, in
steps of 2π/3, which requires 35 = 243 steps (19, 20). A shorter
nested phase cycle with the same selection properties is con-
structed by cycling the phase of the preparation pulse in steps

of 2π/3, and the phases of the second and fourth π pulses in
steps of 2π/5. This requires 3 × 5 × 5 = 75 steps. A further de-
crease in experiment time is accomplished by using the 11-step
CATIONS 305

cogwheel cycle

φ(m)
prep = φ

(m)
2 = φ

(m)
4 = φ

(m)
dig = 0

φ
(m)
1 = φ

(m)
3 = φ

(m)
5 = 2π

11
m

φ(m)
rec = 6 × 2π

11
m,

where m = 0, 1. . .10, φprep is the phase of the preparation pulse
(for example, a cross-polarization field), and φ1 . . . φ5 are the
phases of the π pulses. The notation for the cycle above is
COG11(0, 1, 0, 1, 0, 1; 6). This cogwheel cycle accomplishes
the same pathway selection as the 243-step nested cycle, in only
4% of the experimental time.

In general, the selection of the repeated echo pathway p0 =
{0, −1, +1, −1, +1 . . . −1} in a sequence of one preparation
element followed by n refocussing pulses, where n is even, re-
quires 5n/2 steps in the nested procedure but only 2n +1 steps in
the cogwheel procedure. For example, the selection of the unique
multiple-echo pathway generated by a sequence of 100 π pulses
requires 550 ∼= 9 × 1034 steps in the nested procedure but only
201 steps in cogwheel phase cycles such as COG201(0, 1, 0, 1,
0 . . . 1, 0; −100). Such time savings open up new experimental
possibilities, for example in Carr–Purcell multiple echo experi-
ments (22).

The cogwheel phase cycles described here select a single co-
herence transfer pathway, while rejecting all others. However,
it is also possible to design cogwheel phase cycles which select
multiple coherence transfer pathways, as required, for example,
in pure absorption 2D spectroscopy (3, 4, 23). This topic is under
investigation.

Even shorter phase cycles may be constructed if some of the
feasible coherence transfer pathways are known to have a small
amplitude and may be neglected. We have ignored this possibil-
ity in the discussion above.

Cogwheel phase cycling is also expected to provide a range
of new possibilities in heteronuclear experiments. We also an-
ticipate hybrid approaches in which cogwheel phase cycles are
combined with nested phase cycles and/or pulsed magnetic field
gradients (24).

CONCLUSIONS

Cogwheel phase cycles provide a new approach to the con-
struction of phase cycles, and they can provide large savings in
instrumental time, in some circumstances.

At the moment, it is not clear whether cogwheel phase cycles
have any disadvantages over conventional phase cycles. Cog-
wheel cycles involving many steps may require more accurate
radio-frequency phases than nested cycles (just as a long chain
of meshing cogwheels may require more accurate machining

than a set of independently-driven wheels). This is the subject
of future research.
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Some previous workers have independently investigated the
possibility of generating shorter phase cycles. The authors are
aware of an unpublished manuscript by Chingas, which may
contain anticipations of some of the present results. In addition,
McClung and co-workers have developed a method for discover-
ing redundancies in the standard phase cycles and have suggested
shorter cycles for some experiments (25).
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